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ABSTRACT

Due to the widespread deployment of fingerprint/face/speaker
recognition systems, attacking deep learning based biomet-
ric systems has drawn more and more attention. Previous re-
search mainly studied the attack to the vision-based system,
such as fingerprint and face recognition. While the attack for
speaker recognition has not been investigated yet, although
it has been widely used in our daily life. In this paper, we
attempt to fool the state-of-the-art speaker recognition model
and present speaker recognition attacker, a lightweight model
to fool the deep speaker recognition model by adding imper-
ceptible perturbations onto the raw speech waveform. We find
that the speaker recognition system is also vulnerable to the
attack, and we achieve a high success rate on the non-targeted
attack. Besides, we also present an effective method to op-
timize the speaker recognition attacker to obtain a trade-off
between the attack success rate with the perceptual quality.
Experiments on the TIMIT dataset show that we can achieve
a sentence error rate of 99.2% with an average SNR 57.2dB
and PESQ 4.2 with speed rather faster than real-time.

Index Terms— deep neural network attack, speaker
recognition, convolution neural networks, adversarial ex-
amples generation

1. INTRODUCTION

Deep network based biometric systems, such as finger-
print/face/speaker recognition, have been widely deployed
in our daily life. Meanwhile, finding the weakness and at-
tacking these recognition systems also draw more and more
attention. Although many works have been done on vision-
based systems [1, 2, 3], the attack to speaker recognition has
not been well-studied. There are two main applications of
attacking the speaker recognition systems and finding the
adversarial examples: (1) disturbing the speaker recogni-
tion systems when they are not wanted; (2) helping improve
the performance and robustness of the speaker recognition
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Fig. 1. Illustration of the Speaker Recognition Attacker

systems. In this work, we focus on attacking the speaker
recognition and present a model as well as its optimization
method to attack the well-trained state-of-the-art deep speaker
recognition model by adding the perturbations on the input
speech, as illustrated in Fig. 1.

Attacking the deep neural networks (DNNs) has become
an emerging topic along with the development of DNNs since
the weaknesses of DNNs have been found by Szegedy et
al. [1]. On the vision tasks, some optimization methods, such
as L-BFGS [1], Adam [4], or genetic algorithm [5], are used
to modify the input pixels to obtain the adversarial examples.
But these methods need the gradient or iterations during the
testing phase, which are not practical in realistic scenarios.
Baluja et al. [3] proposed adversarial transformation net-
works (ATNs), which create a separated attacker network, to
transform all inputs into adversarial ones.

Base on the works on vision tasks, some methods are
proposed to attack the automatic speech recognition (ASR)
model. Alzantot et al. [6] proposed to attack the ASR model
via a gradient-free genetic algorithm to generate adversarial
examples iteratively. However, different from visual images,
the psychoacoustic model shows that no difference will be
perceived by humans if the distortion is under certain hear-
ing thresholds. Therefore, Schonherr at al. [7] and Szurley et
al. [8] proposed to optimize the attack with the psychoacous-
tic model, and add perturbations under the hearing threshold.
Our work is different from these audio attack works in two
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Fig. 2. Illustration of our framework. Our speaker recognition attacker is applied to the raw speech input and generates a
speech with perturbations, which can fool the following speaker recognition model although the perturbations are imperceptible.
Besides, a pretrained phoneme recognition model is used to help train the attacker network. No finetuning for the pretrained
modules when training the attacker model.

aspects. First, our work mainly focuses on the different task
to attack the speaker recognition model. Second, our model
is based on ATNs, which need no gradient during the testing
phase and is fast for inference. Besides, although the replay-
ing attack has been explored [9], learning based attack has
not been well-studied. Our contributions can be summarized
as follows:

• We attempt to attack the state-of-the-art speaker recog-
nition model, and find that it is vulnerable to the attack.

• We propose a model to attack the speaker recognition
model. In the non-targeted experiments conducted
on TIMIT dataset [10], we achieve a sentence error
rate (SER) of 99.2% with the SNR up to 57.2dB and
PESQ up to 4.2 with speed rather faster than real-time.

• We present an optimization method to train our model,
and experimental results show that our method can
achieve a trade-off between the attack success rate and
the perceptual quality.

2. SPEAKER RECOGNITION ATTACKER

As illustrated in Fig. 2, our proposed speaker recognition at-
tacker, a trainable network, is used to add generative perturba-
tions onto the input speech to attack the following pretrained
speaker recognition model. A pretrained phoneme recogni-
tion model is used to help train the attacker. Given a speech
s and its speaker label yspk, the non-targeted attack for the
speaker recognition model can be formulated as:

argmin
s′

L(s, s′) s.t. f(s′) = y′spk (1)

where s′ = Tf,θ(s) and y′spk 6= yspk,

where T is the attack model to transform the input speech
signal into an adversarial example, f is a well-trained speaker
recognition model, L is a metric function to measure the dis-
tance between two samples (e.g., the L2 norm). The con-
straint y′spk 6= yspk is changed to y′spk = ytarget for the tar-
geted attack.

2.1. Attacker Network

The proposed attacker network is a fully convolution residual
network, including 5 convolution blocks totally in the residual
branch, as illustrated in Fig. 2. 1-D convolution, batchnorm,
and ReLU are applied in every convolution block, following
the setting in [3]. The kernel size for all convolution layers
is set as 3 and the channel is set to be 32. To increase the
receptive field, we use different dilations in the different con-
volution layers. The dilations for 5 convolution layers are
1, 2, 5, 2, 1, respectively. Besides, we init the weight and bias
of the last convolution layer as zero so that our model adds no
perturbation at the start of the training, which is important for
the optimization to keep the perturbations on a small scale.

2.2. Optimization

The intuitive method to train the attacker network is gradi-
ent ascent, however, in practice, it fails because a well-trained
speaker recognition model propagates back almost zero gra-
dient due to the softmax layer. Motivated by the Wasserstein
GAN [11] to optimize the Wasserstein distance between two
distributions, we just solve this gradient missing problem to
optimize directly on the immediate activation before the soft-
max layer. On the other hand, we also need to ensure the per-
turbations are imperceptible. L2 norm is used to constraint the
scale of the perturbations. Besides, we also take the phoneme
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information into the account via a pretrained phoneme recog-
nition network to optimize the perceptual quality. In sum-
mary, we optimize our attacker network from three aspects:

Ltotal = Lspk + λphnLphn + λnormLnorm (2)

Lspk =

{
x′spk[I1st]− x′spk[I2nd], I1st = yspk

0, else
(3)

Lphn = KL(pphn‖p′phn) (4)

Lnorm = [max(s− s′ −m, 0)]2, (5)

where x′ is the immediate activation before the softmax layer
of the speaker recognition model with the input s′, p/p′ is
the output distribution of the softmax layer of the phoneme
recognition model with the input s/s′, I1st/I2nd is the in-
dex of 1st/2nd largest value in x′spk. In Lphn, we use Kull-
back–Leibler divergence (KLD) to measure the distance be-
tween two distributions. In Lnorm, m is a hyper-parameter
to give a margin in which the perturbations are thought im-
perceptible. λphn and λnorm are used to fuse the three loss
items. For the targeted attack, the loss is the same except that
Lspk is changed to

Lspk,target =

{
x′spk[I1st]− x′spk[ytarget], I1st 6= ytarget

0, else,
(6)

where ytarget denotes the target speaker class.

2.3. Inference

The input speeches with variable length are split into frames
with fixed length due to the fully connection layer in the
speaker recognition model in the training stage. However, in
the testing stage, the input speeches can be of arbitrary length
because our attacker network is a fully convolution residual
network. The inference is fast because our attacker network is
lightweight with only 5 convolution blocks and small kernel
size filters.

3. EXPERIMENTAL RESULT

3.1. Experimental Setup

Pretrained Speaker/Phoneme Recognition Model. We
use the state-of-the-art speaker recognition model, Sinc-
Net [12], as the target model to attack. SincNet replaces
the first layer of a CNN with a group of learnable bandpass
filters. In this way, the network is more interpretable and
show better performance [13]. Besides, SincNet also works
on phoneme recognition1. In our experiment, we use the
official released pretrained SincNet model for speaker recog-
nition. The phoneme recognition model is referred from

1https://github.com/mravanelli/pytorch-kaldi

λphn λnorm SER(%)↑ SNR(dB)↑ PESQ↑
- - 1.52? - -
0 0 99.7 18.56 1.09
0 1000 96.5 56.39 3.72
0 2000 86.7 57.79 3.61
1 1000 99.2 57.20 4.20
5 1000 93.9 58.00 4.25
10 1000 90.5 59.01 4.28

Table 1. Non-targeted attack results. The first row is the base-
line performance of speaker recognition without attack. The
rest of the table shows the attack results of our model with dif-
ferent trade-offs between SER with SNR and PESQ by tuning
λphn and λnorm. ?This result is not the same as that in [12],
but this model is released by the author.

Pytorch-Kaldi [14] and achieve a 26.4% frame error rate on
the TIMIT[10] dataset2.
Dataset and Metric. Following the setting in [12], we con-
duct experiments on TIMIT (462 speakers, train chunk) [10]
to demonstrate the performance of our proposed model. The
signal-to-noise ratio (SNR) and Perceptual Evaluation of
Speech Quality (PESQ) score [15] are used to evaluate the
objective and perceptual quality, respectively. SNR is calcu-
lated as follows:

SNR = 10 log10[(σ
2
s/σ

2
e)]

2, (7)

where σ2
s/σ

2
e is the mean square of input signal/error. PESQ [15]

is an integrated perceptual model to map the distortion to a
prediction of subjective mean opinion score (MOS) with
range [0.5, 4.5], which is an ITU-T recommendation tech-
nology [16]. Following the works for attacking image clas-
sification [1, 2], we use the classification error rate (CER)
to evaluate the performance of our attacker. For the non-
targeted attack, sentence error rate (SER), which is defined
as the CER of the speech sentences, is used to measure our
attacker’s performance. For the targeted attack, our attack is
successful as long as the prediction is the target, so we use
prediction target rate (PTR), which is the percentage of the
target in the predictions over the testing set, to measure our
attacker’s performance.
Trainging Details. The speech sentences, with sampling rate
16k, are split into 200ms frames with 10ms stride, follow-
ing [12]. The data will be normalized before being feed into
the attacker model and de-normalized when they output the
attacker model. After finetuning the hyper-parameters, we set
λphn = 1, λnorm = 1000 and m = 0.01. We use Adam [17]
optimizer with a learning rate of 3 × 10−4 to train the attack
model for 10 epochs. Data, code, and pretrained models have
been released on our project home page3.

2we use the same train/test split for phoneme and speaker recognition,
which is different with the typical split manner for phoneme recognition.

3https://smallflyingpig.github.io/speaker-recognition-attacker/main
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Fig. 3. The spectrogram energy distribution of the perturba-
tions over the testing set.

3.2. Non-targeted Attack

To demonstrate the effectiveness of our proposed model,
we conduct non-targeted attack experiments on the TIMIT
dataset. The results are illustrated in Table. 1, some conclu-
sions can be drawn:

• Our proposed model successfully attacks the trained
state-of-the-art speaker recognition model with an SER
of 99.2% on the testing set. Meanwhile, the perturba-
tions are small enough to be imperceptible for humans
because the SNR is up to 57.2dB and PESQ is no less
than 4.2, indicating the efficiency of our model.

• Tuning λnorm fails to get a trade-off between SER and
PESQ (row 1st, 2nd, 3rd in Table. 1), while tuning λphn
works for that (2nd, 4th∼6th in Table. 1), demonstrat-
ing our optimization is effective to achieve a trade-off
between the attack success rate and and the perceptual
quality.

• The results in the 2nd row and 4th row show that
Lphn can improve the performance of the attacker
model (measured by SER), as well as the quality of the
adversarial examples (measured by SNR and PESQ).

Besides, we also give the distribution of the perturbations
on the frequency domain to study if the perturbations have
frequency selectivity. The frequency distributions of the per-
turbations from the attacker model with λphn = 1 are shown
in Fig. 3. The spectrogram energy distribution shows that:
(1) the perturbations are full-band, and all the frequencies are
useful for the attack; (2) the energy in the 7k∼8k band is
significantly stronger than that in other bands, indicating the
high-frequency band has much affect on the speaker recogni-
tion’s performance. The frequency characteristics of pertur-
bations have a great influence on the model performance and
signal quality, but looking deeper into this question is beyond
the scope of this paper.

3.3. Targeted Attack

Besides the non-targeted attack, we also evaluate our model
on the targeted attack. We fix the hyper-parameters as

Target ID PTR(%)↑ SNR(dB)↑ PESQ↑
0 91.4 57.55 3.36

100 89.3 56.83 3.16
200 63.3 58.42 3.69
300 58.7 56.92 3.52
400 57.6 58.36 3.68
avg 72.1 57.64 3.48

Table 2. Targeted attack results. The first five rows are the re-
sults of the targeted attack for five randomly selected speakers
from the TIMIT dataset. The last row is the average result of
the above five rows. PTR denotes the prediction target rate.

λnorm = 1000, λphn = 1,m = 0.01 in the targeted attack.
Five speakers are randomly selected from the 462 speakers of
the TIMIT dataset as targets. The attack results are illustrated
in Table. 2. The results show that:

• Our model can attack the speaker recognition with a
PTR of 72.1% on average over the five targets. Mean-
while, the perturbations are small enough because the
SNR is up to 57.64dB.

• The PESQ (3.48 on average) is well enough although it
is not as good as that in the non-targeted attack, given
the fact that targeted attack is more challenging than the
non-targeted attack.

3.4. Real-time Attack

Our attack model is very lightweight with only 5 convolution
blocks, so it is very fast. To verify it is fast enough to pro-
cess the speech data in real-time, we calculate the real-time
factor(RTF) over the testing set. RTF is defined as the ratio
of the processing time to the input duration and the system is
real-time if RTF ≤ 1. We test our model in CPU mode on
a machine with an Inter(R) Core(TM) i7-6700K @ 3.4GHz
CPU and get an average RTF 0.042, indicating that our at-
tacker is more than 20 times faster than the real-time require-
ment, although it runs in the CPU mode.

4. CONCLUSION

In this paper, we proposed a model to attack the speaker
recognition model by training a lightweight attacker net-
work to add perturbations on the input speech. Experiments
show that our model was effective and efficient on both non-
targeted and targeted attacks. We have built a pioneer work on
the learning based speaker recognition attack and established
the corresponding benchmark for such study. In the future,
the black-box attack and transferable attack will be explored
because the gradient of the target is usually inaccessible in
the real scenarios.
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